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Turbulent Flow over Thin Rectangular Riblets
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The effect of longitudinal thin rectangular riblets aligned with the flow direction on turbulent

channel flow has been investigated using direct numerical simulation. The thin riblets have been

modeled using the immersed boundary method (IBM) where the velocities at only one set of

vertical nodes at the riblets positions are enforced to be zeros. Different spacings, ranging

between 11 and 43 wall units, have been simulated aiming at getting the optimum spacing

corresponding to the maximum drag reduction while keeping the height/spacing ratio at 0.5.

Reynolds number based on the friction velocity #z. and the channel half depth § is set to 150.

The flow is driven by adjusted pressure gradient so that the mass flow rate is kept constant in

all the simulations. This study shows similar trend of the drag ratio to that of the experiments

at the different spacings. Also, this research provides an optimum spacing of around 17 wall

units leading to maximum drag reduction as experimental data. Explanation of drag increasing/

decreasing mechanism is highlighted.
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Nomenclature

k . Turbulent kinetic energy

p . Pressure

¥z . Spanwise separation

Re, : Friction Reynolds number, Re;=u.0/v

R;; : Two-point correlations

t . Time

T . Thickness of riblet

U, u;: - Mean and instantaneous velocity compo-
nent in 7™ direction

Ur . Friction velocity, v 7w/ 0

us . Friction velocity estimated from the total
mean velocity

x,¥,2 . Streamwise, wall-normal and spanwise

directions
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. Channel half width

. Kronecker delta

: Kinematic viscosity

. Density

: Wall shear stress

. Height of riblet

. Distance between two riblets
. Momentum forcing

. Mass source/sink

Subscripts, superscripts and notations

rms

+

. Root mean square value of the fluctuating

variable

. Normalized by wall variables ; %, and v

on each wall

. Average over x-z planes and time
. Fluctuating quantities
C Wall

1. Introduction

Riblet has been known as one of the practical
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methods in passive drag reduction techniques of
turbulent boundary layer flows. It can thought of
as wall surface with micro-grooves aligned in or
titled slightly to the flow direction. The riblets
work to change the small eddy structures in tur-
bulent boundary layers by damping the lateral
motion of fluids which in turns, suppress the
generation and sustaining mechanism of near-
wall coherent structures. Such changes may lead
to an increase or decrease in friction drag de-
pending on the relative sizes of the eddy structures
to the sizes of the embedded riblets. Continuous
efforts have been devoted to the development of
an optimum shape of riblets aiming at attaining
higher rates of drag reduction in aeronautics and
hydrodynamics fields. Different shapes including
the triangular, rectangular, trapezoidal, sawtooth
and scalloped cross-sections have been investigat-
ed aiming at proposing the optimum shape to get
the drag reduction.

Early, Walsh (1982, 1983) reported the favora-
ble property of reducing the friction drag up to
8% in laboratory experiments. There are many
researchers who have extended the knowledge
about the mechanisms associated with the drag
reduction analytically (Bechert and Bartenwerfer,
1989), or using numerical methods (Choi et al.,
1993 ; Chu and Karniadakis, 1993 ; Goldstein et
al., 1995a, 1995b ; Stalio and Nobile, 2003) and
experimental methods (Choi, 1989 ; Vukoslavcevic
et al.,, 1992; Bruce, 1993; Suzuki and Kasagi,
1994 ; Bechert et al., 1997, 2000). Among the dif-
ferent configurations studied before, the thin rec-
tangular riblets have shown the maximum drag
reduction which amounts to 10% according to
Bechert et al.(1997).

The numerical simulations have lagged the
experiments during the last decades due to the
difficulties in treating complex geometries numer-
ically. Although the few numerical simulations
mentioned above have well represented the global
drag reduction observed by the experiments, there
is still much work to do in order to simulate more
complicated configurations such as the scalloped
cross—sections or deformable walls. Recently, new
methodologies have been developed to overcome
the difficulty of generating special fitted surfaces

to the complicated shapes of riblets. Among such
techniques, the immersed boundary method (IBM)
has shown promising results. Goldstein et al.
(1995a) had presented IBM to be used in turbu-
lent channel flow using Spectral Methods. In
series of DNS, Goldstein et al. (1995b) extended
the IBM to simulate different geometries of riblets
and wires. The IBM has been applied to finite
difference and finite volume successfully for sim-
pler flows. Saiki and Biringen (1996); Ye et al.
(1999) applied it to 2D cylinder and complex
geometries using FD (finite difference).

Recently, a modified immersed boundary meth-
od was suggested by Kim et al.(2001). The mo-
mentum forcing in the Navier-Stokes equations
and the mass source/sink in the continuity equa-
tion were adopted to satisfy the no-slip condi-
tion on the immersed boundary and the mass
conservation for the cells intersected with the
immersed boundary. Here the momentum forcing
and mass source/sink are applied only on the
body surface or inside the body. By applying this
IBM to a second order FV code, Kim et al. (2001)
successfully simulated the flow around cylinder
and sphere.

In IBMs, when the obstacle is big enough to
enclose more grid points inside its boundaries,
the treatment of the surface would be better. To
ensure zero velocity at the surface, artificial ve-
locities inside the obstacle (at the nearest interior
points) should be generated in the opposite di-
rection to those outside the body (at the nearest
exterior points). Therefore, obstacles of infini-
tesimal sizes less than the computational grid
sizes are still challenging problem. To our knowl-
edge, the above mentioned numerical techniques
have not studied such thin riblet configurations.

The present study aims at exploring the flow
above very thin riblets whose thicknesses are
much less than the grid spacing. Due to the vari-
ous parameters describing the geometry of the
riblets (thickness, height and spacing), we se-
lected a fixed height to spacing ratio of 0.5 and
negligible thickness. The only changing para-
meter would be the spacing between riblets. Se-
lecting those ratios was based on the conclusion
of Bechert et al.(1997) which showed the maxi-



Turbulent Flow over Thin Rectangular Riblets 1803

mum drag reduction by the various combinations
of parameters in their experiments. Further stu-
dies for the effect of the riblet thickness and height
to spacing ratio will be conducted. For this pur-
pose, the IBM is implemented in order to force the
velocities along only one vertical set of grids up to
the height of the riblets to zeros.

2. Computational Details

Figure | shows the flow geometry and coor-
dinates system. In this study, x, ¥ and z denote
the streamwise, wall-normal and spanwise direc-
tions, respectively. Also, H, T and S indicate the
height, thickness of riblet and the distance be-
tween two neighboring riblets, respectively. Only
the lower wall is evenly distributed with the thin
riblets. No-slip and no-penetration boundary
conditions are enforced at both walls. The turbu-
lent flow is assumed fully developed over the
riblets so that the periodic boundary conditions
are simply assigned in the streamwise (x) and
spanwise (z) directions.

The governing equations describing instantan-
eous incompressible viscous flow in the present
study are the unsteady three-dimensional conti-
nuity, momentum equations :
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Fig. 1 Schematic of flow geometry and coordinate

system

where x; are Cartesian coordinates, #; are the
corresponding velocity components, and f; is
the momentum forcing. In order to simulate very
thin riblet where the three components of velocity
are to be zero at the surface, a collocated grid
system has been used rather than the staggered
grid used by Kim et al.(2001). The locations of
velocity components coincide with the pressure
nodes. The forcing f; is obtained by the direct
scheme proposed by Mohd-Yusof (1997). The
time discretization of equation (2) regardless of
the spatial treatments of the viscous, pressure and
nonlinear terms can be written in general form

as;
ultt—yl? du; 0b 1 Pu;
At W an aJCi Re: asz +fl (3)
The forcing f; needed to ensure that 7™ is zero

at the riblet nodes can be obtained by arranging
equation (3) if all the other terms are known
from the latest time step

_—ul u: _op , 1 Pus
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Whereas f; would be zero elsewhere in the dom-
ain.

The variables in the above equations are nor-
malized by the channel half depth &, friction
velocity #.. The normalization results in one
dimensionless parameter of the friction Reynolds
number Re;=u.8/v. Low Reynolds number of
150 is used in the present study. The driving
pressure gradient is adjusted to keep constant
mass flow rate in the x-direction in all simula-
tions. As shown in Fig. I, the computational
domain has the dimensions 10.6678 X2 X2.886
in x-, y- and z-directions, respectively. Spacing
(S) has been changed from around 11 to 43 wall
units.

The central difference scheme with the second-
order accuracy based on the finite volume method
is used for the spatial discretization. The col-
located grid system is used to facilitate the im-
posing of the forcing on vertical line of grids. The
control volume faces are centered between the
velocity nodes. A two-step time-split scheme is
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used to advance the flow field which is based on
the previous works of Kim and Moin (1985);
Zang et al.(1994).

First the velocity is advanced from time level
‘w’ to an intermediate level ‘*’ by solving the
advection-diffusion equation without pressure
term. In the advection-diffusion step, the non-
linear terms are treated explicitly using third-
order Adams-Bashforth scheme. The diffusion
terms are treated implicitly using Crank-Nicolson
scheme. The semi-discrete advection-diffusion
equation including momentum forcing f; is

16 0
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Then the following Poisson equation, which is
derived by using mass conservation, for pressure
is solved fully implicitly.

T ar(5e) ®

Once the pressure is obtained, the velocity field
at ‘n+1" is obtained with a pressure-correction
step.

ult'=ut At< ag;:l > (7)

The pressure correction is applied at both the
velocity nodes and at the control volume cell faces
as well.

The simulations and the present results have
used 64 X65X 144 grid points in the streamwise,
wall-normal and spanwise directions, respective-
ly. Uniform meshes have been used in streamwise
and spanwise directions while the wall-normal
direction uses a hyperbolic tangent distribution
to account for the high gradients near the walls.
Higher resolution simulations are underway ac-
cumulating valuable statistical description of near
wall alteration due to riblets.

The time step is set to 0.075 y/#2 in order
to keep the CFL number below 0.3. The flow

reaches the fully developed state after nearly 2000
v/u?. Plane averages over x-z planes and time
have been accumulated for non-dimensional time
interval of 3000 /%2 which is quite longer than
the periods used in generating databases in the
other DNS simulations of channel flows over
riblets.

3. Results and Discussions

Figure 2 shows the comparison of the drag
reduction rate Ar/n obtained in the present
study with the experimental data of Bechert et
al.(1997) for different spacing S*. Here, S is
defined as St=Su./v, and u. is calculated from
the 7 at the riblet surface. The shear stress on
the flat plate  is calculated from independent
simulation at the same Reynolds number, thus
Ar=1—1 is the difference of the shear stresses
between riblet plate and flat plate. Since the
shear stress at the upper non-riblet surface can
be estimated directly from the mean velocity gra-
dient, the shear stress at the riblet surface can
be deduced from the momentum balance in the
flow direction. Negative and positive value of
At/ represents the drag reduction and increase,
respectively. As shown in Fig. 2, the profiles of
plane and time-averaged shear stress rates as
function of the lateral riblet spacing show quali-
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Fig. 2 Drag reduction rate as a function of rib-

let spacing obtained by present simulation,
which is compared with that of the experi-
ments of Bechert et al.(1997)
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tatively good agreement with the experimental
data of Bechert et al.(1997). The optimum value
of riblet spacing obtaining the maximum drag
reduction can be found from both results. This
optimum value is about 17 wall unit, where the
maximum drag of 15% obtained from the present
study is higher than the experimental measure-
ments of Bechert et al.(1997) corresponding to
7% for T/S=0.04, 9% for T'/S=0.01 and 10%
for T/S=0.02. Also present study shows that
larger S can lead to drag reduction in the limit
for S*<35. But, the experiments show lower
spacing of ST<30 at which the net drag is zero
as shown in Fig. 2.

It worth mentioning that the experiments of
Bechert et al.(1997) had been done for ranging
between 250 to 700. They mentioned that their
drag reduction data at lower Reynolds number
than 250 had deviated from that at higher Rey-
nolds number experiments. Therefore the relative
deviation between the drag reduction rates in
present results and Bechert et al.(1997) can be
partially contributed to the effect of low Reynolds
number and also to the thickness of the riblets.
Since the wetted area of the riblets would be
theoretically the minimum when the thickness
is zero, one can expect that the drag reduction
rate will be lower than that of Bechert et al.
(1997).

To clarify the effect of thickness, the present
authors (El-Samni et al., 2005) have used Car-
tesian Grid Method for thickness/spacing ratio
of 0.02 and obtained drag reduction ratio of 11%
which is much closer to experiments of Bechert
et al.(1997) than present IBM result.

Two kind of averaging of profiles are used.
Averaging over the riblets tip is performed along
all the vertical x-y planes passing through the
riblets and averaging over the valleys is done by
summing all planes lying between the riblets
positions. The later average may mislead readers
since it smears the variation of velocities and
Reynolds stresses within the distance between
two adjacent riblets. In other words, values at
the central plane of the valley differ significantly
from those at the adjacent plane next to the riblet
surface.

1805

Figure 3 shows the variation of streamwise
mean velocity in global units for the different
riblet spacing. The streamwise velocities averaged
over x-z planes are revealed in Fig. 3(a). Other-
wise, Fig. 3(b) shows the streamwise velocities
averaged over x-z planes corresponding to riblet
tips. As riblet spacing, S* increases, mean veloci-
ty becomes smaller in near riblet side for §/6<
—0.75. In contrast, from y/0>—0.75 to y/8=
0.85 the mean velocity becomes lager with S*
increasing in order to compensate the velocity
reduction in riblet side, because present simu-
lations are carried out by fixing mass flow rate
in the x-direction. No apparent variation of the
mean velocity is found above y/5=0.85 accord-

i [}

—— 5=
F =28

_-' 1§ |':|I =i .
: [k cees gt 29
-I.' e & T
? - F =i
m— AT NTRFTRACE
il L L i
[} k5 (411} 5 il
I
Fig. 3 (a) Total mean streamwise velocity and (b)

mean streamwise velocity above riblet tips in
global units for different riblet spacings
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ing to different riblet spacing. The mean velocity
is almost same along the spanwise direction ex-
cept near the riblets. Also, the mean velocity
above the riblet spacing is larger than that above
the riblet tip at any given location of y. These
results have been observed in previous researches
(Choi et al, 1993; Bechert and Bartenwerfer,
1989 ; Vukoslavcevic et al., 1992).

Mean velocity profiles normalized by the inner
values at each wall are plotted for the different
riblet spacing in Fig. 4. The profiles are shifted
towards higher values of y* by a distance equiv-
alent to the riblets height. However, the logarith-
mic region appears in both cases but it is shifted
up in the drag reducing cases whereas it shows
little shift downward in the drag increasing case,
which indicates the increase and decrease of the
boundary layer thickness in the former and the
later cases, respectively (Choi et al., 1993).

RMS of Reynolds stress normal components
are shown in Fig. 5 for the two most distinctive
cases ; drag reducing case of ST~17, Fig. 5(a),
and drag increasing case of St~43, Fig. 5(b). In
the valley between the riblets, 2zs decreases more
significantly in the drag reducing case. As the
spacing S* decreases from 43 to 17 wall units, the
suppression of #mms in the valley region is more
pronounced. Hence, it can be inferred that a layer
of height H* works as a damping zone for the
Reynolds stress and its effect becomes clearer in

I

Fig. 4 Mean streamwise velocity profiles normaliz-
ed by the inner wall values at each wall for
different riblet spacing

O. A. El-Samni, Hyun Sik Yoon and Ho Hwan Chun

smaller heights. The same damping effect has
been observed in both lateral components vms
and wms in the valley region. However, at the
widest spacing of S*~43, vms does not show
much reduction compared with that of smooth
surface and the magnitude of wms is of the
same order of that of vmms. This may indicate
the penetrating and residing of some coherent
streamwise vortices in the valley between riblets
especially when the spacing increases more than
the nominal sizes of such vortices whose diame-
ters were estimated by Kim et al.(1987) to be
around 25 wall units. Values of vms and wmms
are comparable within the valleys of S*~24
and 28 cases as well, whereas they are much

e (i Ay

RMS

(b)

RMS of Reynolds normal stresses normaliz-

Fig. 5
ed by the inner wall values at each wall for
(a) for St~17 and (b) ST~43 cases
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suppressed in cases of S*~7 and 12 since the
riblets spacing becomes narrower enough to pre-
vent the penetration of quasi streamwise vortices
to reside in the valleys. The peak of wms is
shifted towards higher y*. While the peak is ob-
served at y*~14 in smooth surface simulations,
it occurs at y*~23.5 in drag increasing case
(S*~43) and at y*~24 in drag decreasing case
(ST~17). Since the peak of ums is associated
with the planes at which low- and high-speed
streaks are more prevailing, the larger shifting of
such peak in drag-reducing case indicates the
blockage effect of the riblet to near-wall activi-
ties in a layer of thickness equal almost to the
height of the riblets. The larger the spacing, the
smaller would be the blockage effect and hence
the peak of #»»s would be at lower distances. The
lateral components of Reynolds stress vms and
wrms are reduced in regions above the tip level,
y*>9, in drag-reducing case. Both components
increase slightly in the drag-increasing case for
y*>20, especially wms. Although the narrower
riblet spacing (S*<20) shifts the streaks up-
ward, there is less near wall activities due to the
damping effect to the vertical structures in this
zone. On the other hand, the widest spacing (S™
~43) permits the vortices to reside inside the
valleys and also to evolve in the region above the
riblets tips.

Reynolds shear stress is plotted in Fig. 6 com-
pared with that at smooth surface. In Fig. 6(a),
the stress is suppressed according to the damping
effects on the near-wall vertical structures. The

vt in the valley is almost zero

value of —u v
whereas the profile averaged above the riblet tips
collapses well with that averaged over the valley
in most the channel at y*>9. This indicates that
the mechanism for generating —z'*¢’" above
the riblets tips is similar to that above the valley
regions, which suggests again the upward shift
of the streaks layer with frozen layer (with very
small activity) below y*~9. In contrast to this
image, —u’*v’* averaged above the riblets tips
has considerable peak in drag-increasing case
as shown in Fig. 6(b). As it will be shown later,
the wide spacing permits eddies above the riblet

height region to push fluid from the high speed
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Fig. 6 Reynolds shear stress normalized by the inner

wall values at each wall for (a) for ST~17
and (b) S*~43 cases

region into the valley which in turns forms
smaller eddies inside the valley. Thus, the smaller
eddies move the low speed fluid outward from
the valley region passing mostly adjacent to the
riblet surface. Such scenario results in larger
positive v’ at the riblets tips. With the retardation
or the streamwise velocity, there exists a peak
for —#’+v’* in this region as shown in Fig. 6
(b) at y*>20. Due to the vortices penetration
inside the valleys and the out rush of fluids from
the valleys nearer to the riblets, the mechanism
of generating —#’*v’* above the riblets differs
from that above the valley so that the averaged
profiles depart up to y*~60. The difference does
not propagate further into the channel core.
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Flow visualization of two distinctive increas-
ing and reducing drag cases are shown in Fig. 7,
where the streamwise velocity contours and the
cross-stream velocity vectors are plotted. It can be
observed that the case of increased drag where
the spacing being larger than the nominal sizes of
the quasi-streamwise coherent structures so that
eddies may reside inside the valley between two
adjacent riblets as seen clearly in Fig. 7(a). On
the other hand, the smaller spacing elevates the
rotating eddies to higher y* further from the
wall and no penetration of the quasi-streamwise
structures inside the valley between riblets. In the
former case, the wetted area against which eddies
are rotating increases leading to larger rates of
drag.

Low and high-streaks a drag increasing and
decreasing cases are shown in Fig. 8 and Fig. 9,
respectively. In Fig. 8(a), the streaks in the val-
ley of the riblets are shown where they appear
aligned in the streamwise direction due to the
effect of the fence of riblets. In this case, 12 fins
are evenly distributed within the full spanwise
length of the picture but the lines of the riblets are
removed from the image to be clearer. At the
position of maximum #7ss shown in Fig. 8(b),
the streaks of low- and high-speed reveal more

Contours of streamwise velocity embedded

with the cross-stream velocity vector ;
(a) drag increasing spacing of S*~43 and
(b) drag reducing spacing of S*~17

O. A. El-Samni, Hyun Sik Yoon and Ho Hwan Chun

intermittency and the disappearing of the mean-
dering of the streaks. The streaks on the smooth
surface at the same y* of maximum #7ms preserve
the typical meandering of 2D turbulent channel

(¢) y*~14 at the smooth surface

Fig. 8 Low- and high-speed streaks for drag-
increasing case S*~43

1
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(c) y*~14 at the smooth surface

Fig. 9 Low- and high-speed streaks for drag-
decreasing case St~17
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flow as shown in Fig. 8(c). In the case of drag-
reduction case, the valley show much more sup-
pression of the streaks. Bear in mind that the
number of riblets in this case is 24 and they are
removed from the image in Fig. 9(a) for clarity.
Streaks above the riblets tip and above the
smooth surface both obtained at elevations where
Uyms is maximum are shown in Fig. 9(b) and (c),
respectively. They appear very similar suggesting
again the riblet with such narrow spacing damp
the layer occupying the riblet height with their
valleys. Hence, the activity of turbulence above
the tips resembles that of smooth surface which
means the thickening of the boundary layer.
Spatial average over the x-direction can give a
picture of the coherence of events occurring near
the riblets. Fig. 10 shows the spatial average of —
v’ for drag-increasing (Fig. 10(a)) and reduc-
ing case (Fig. 10(b)).
clearly that the riblets play a role in concentrat-

It can be distinguished

ing the generating of Reynolds shear stress to
near riblet tips in the drag-increasing case, as
shown in Fig. 10(a). The wide spacing, in this
case, permits the penetration of small eddies to

(a) Drag-increasing case (S*~43)

(b) Drag-decreasing case (S*~17)

Fig. 10 Spatial average of the Reynolds stress {z'v’)

i

reside in the valley between riblets. Therefore, it
is more likely to find inrushes of fluids from the
bottom of the valley to move adhesively to the
riblets side-walls and give a jet like flow near the
tips as it was shown in Fig. 7(a). Such concen-
tration of Reynolds shear stress diminishes in the
drag-reducing case as shown in Fig. 10(b).

4. Conclusions

The immersed boundary method (IBM) has
shown potential in predicting flow fields over
complicated geometries. In an initial stage of
testing the performance of IBM in simulating
riblets of different shapes, simplified thin rectan-
gular riblets aligned in the streamwise direction
are investigated and compared with the experi-
mental results. Good agreement of the present
prediction of the drag reduction rates with the
experiments despite the larger rates of reduction.
The important point in the present study is that
the IBM could mimic very thin riblets and pre-
dicted well the optimum spacing at which the
drag can be minimized.

The present study demonstrates the significant
changes in Reynolds stresses as well as the in-
stantaneous fields over the riblets. Larger spacing
than the nominal sizes of the quasi-streamwise
coherent structures leads to the possibility of
penetrating them into the valley between riblets
which in turns results in larger drag. The two
classes of drag-increasing and drag-decreasing
cases are highlighted.

Finer grid system is needed to verify the de-
pendence of the drag calculation on the grid
system resolution in order to explain the higher
rates obtained in the present study compared with
those of the experiments. The present results in
general is encouragingly to move in simulating
more complicated shapes of riblets aiming at
proposing an optimum geometry for maximizing
the drag reduction rates.
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